SPE Liquids-Rich Basins Conference—North America

13–14 September 2017 The Petroleum Club MIDLAND, TEXAS, USA

SPE-187498

Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity - A Permian Basin Case History

Kale Jackson, Endurance Resources; Olatunji Orekha, CARBO Ceramics

Outline

Introduction

Ultra Lightweight Ceramic (ULWC) Proppant

- 1. Physical properties
- 2. Laboratory testing

Proppant Transport Evaluation

- 1. Stokes Law calculations
- 2. Slot Experiment and Results

ULWC field application – Permian Basin Case History

- 1. Operational considerations
- 2. Well performance

Summary and Conclusions

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity -

SPE Liquids-Rich Basins Conference

Introduction

Background - Slickwater Fracturing (SWF) on the rise in recent years

Drivers for design evolution include

- 1. Proppant pack damage minimization
- 2. Formation complexity
- 3. Environmental concerns.
- 4. Cost

Limitation of SWF - Proppant carrying capacity

Design requirements for successful SWF

- 1. Large water volume requirement
- 2. Limited max proppant concentration (0.25 2.00 PPA)
- 3. Smaller mesh size proppant (100 Mesh & 40/70)

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity -

SPE Liquids-Rich Basins Conference

Ultra Lightweight Ceramic (ULWC) proppant

ULWC design goals

- 1. Low density proppant
- 2. Increased fracture coverage (same mass ULWC, lbm)
- 3. Reductions in pump time, water + chemical usage (with same volume ULWC, cu. ft)

Property	ULWC	Sand	IDC	
ASG	2.0	2.65	3.25	
BD (g/cc)	1.15	1.56	1.88	
BD (lbm/ft ³)	72	97	117	
Roundness	0.9	0.6 - 0.7	0.9	
Sphericity	nericity 0.9		0.9	

Table 1 – Physical characteristics of ULWC and sand

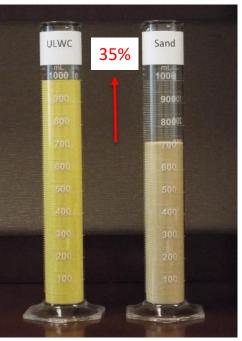


Fig. 1 – Equal mass of ULWC and sand

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity -

SPE Liquids-Rich Basins Conference

Long Term Conductivity Comparison of ULWC with Sand

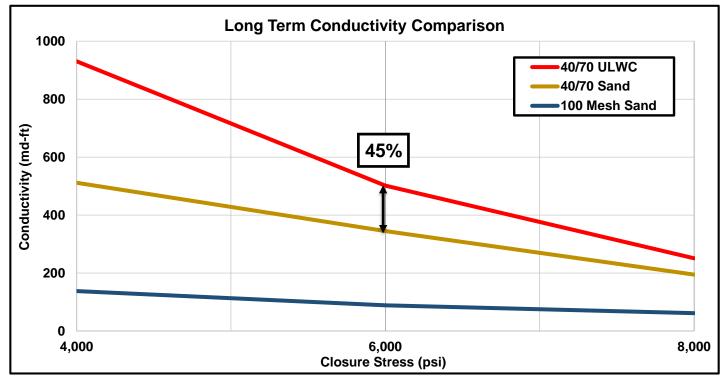


Fig. 2 - Long Term Conductivity Comparison of ULWC with 100-Mesh sand and 40/70 Frac Sand

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity -

SPE Liquids-Rich Basins Conference

Proppant Transport – Static Conditions

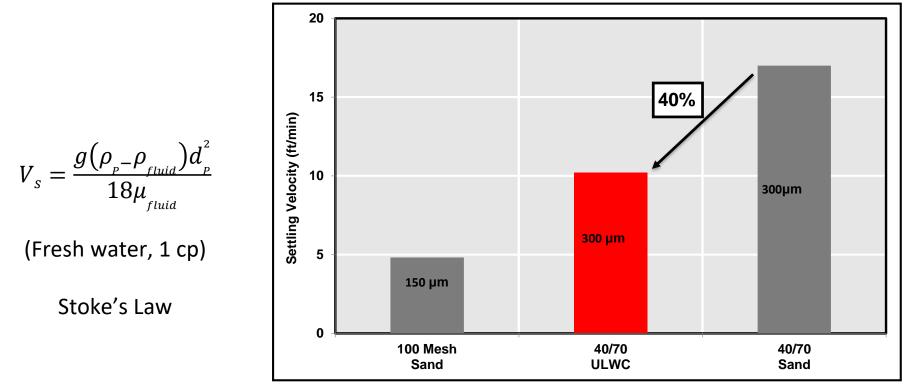


Fig. 3 – Settling velocity comparison of 40/70 ULWC with 100-Mesh sand and 40/70 sand

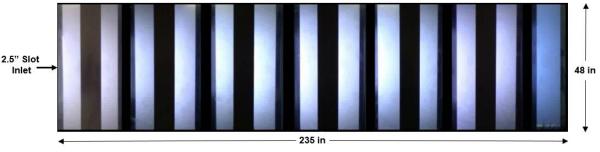
Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity -

SPE Liquids-Rich Basins Conference

Proppant Transport – Dynamic conditions

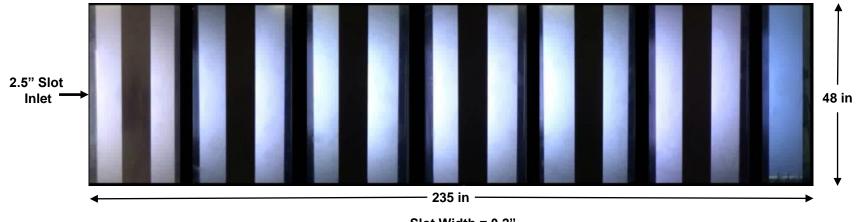
Slot testing used to evaluate transportability under pumping conditions

Major test apparatus


- 1. Water pumps, reservoirs
- 2. Flowlines, flowmeters
- 3. Pressure transducers
- 4. Catch tanks
- 5. Digital cameras

4 different test scenarios (Similar volume)

- 1. Test 1 40/70 Sand
- 2. Test 2 40/70 ULWC
- 3. Test 3 50:50 (by volume) mixture of Sand and ULWC
- 4. Test 4 Alternating stages (Sand:ULWC:Sand:ULWC)



A Permian Basin Case Study • Olatunji Orekha

Slot Width = 0.2"

Proppant Transport – Slot Flow

Slot Width = 0.2"

Performance indicators

- 1. Proppant profile/geometry in slot
- 2. Water requirement
- 3. Far-field sample size

Test Conditions

- 1. Freshwater system (ambient T, P)
- 2. Slurry rate 10.5 gpm
- 3. Slurry concentration 2 PPA
- 4. Equivalent proppant volumes

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity -

SPE Liquids-Rich Basins Conference

Slot Testing Results - Tests 1 & 2

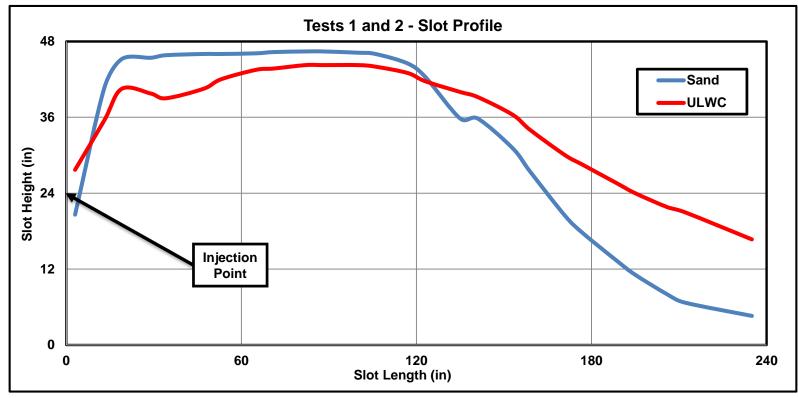


Fig. 4 - Slot Profile for Tests 1 & 2

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity -

SPE Liquids-Rich Basins Conference

Slot Testing Results - Tests 3 & 4

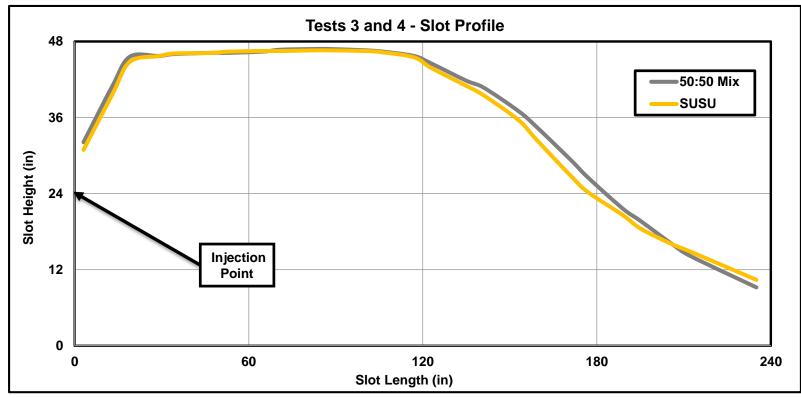


Fig. 6 - Slot Profile for Tests 3 & 4

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity -

SPE Liquids-Rich Basins Conference

Proppant Transport Evaluation – Test 4

Fig. 8 - Slot sections schematic during Test 4, showing the geometry of Sand and ULWC

- Sand settled early in the near-field
- ULWC "launches" over settled sand
- Conductivity channels in settled sections

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity -

SPE Liquids-Rich Basins Conference

Slot Testing Results – Overall Profile

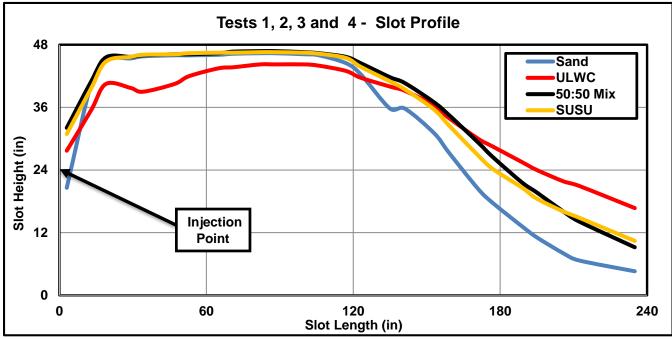


Fig. 7 – Overall slot Profile for Tests 1,2,3 & 4

- 100% ULWC has 4x the far-field height of sand
- Mix and S-U-S-U : 2x height of sand in the far-field

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity -

SPE Liquids-Rich Basins Conference

Slot Testing Results - Summary

Test	Sample	*Mass Pumped (Ib)	*Areal Coverage (sq. ft)	Water Usage (gals)	**ULWC discharged (Ib)	**Sand discharged (Ib)
1	ULWC	74.4	58.1	37.20	3.82	-
2	Frac Sand	98.6	55.8	51.20	-	1.21
3	50:50 Mix	86.5	57.1	46.40	2.62	-
4	S-U-S-U	86.5	56.3	46.10	1.44	0.65

Table 2 – Slot Flow Results

- 1. Equivalent proppant volume in Tests 1 & 2 with ~30% less fluid (ULWC)
- 2. ~ 3X ULWC sample in far field
- 3. Similar fluid & geometry utilization in Tests 3 & 4

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity –

Permian Basin Case History – Well A

• "Wildcat" well located in the 2nd Bone Spring

• 100 ft gross thickness

• Previous success with 100 – Mesh and 40/70 sand

• Design goal – fracture length

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity -

SPE Liquids-Rich Basins Conference

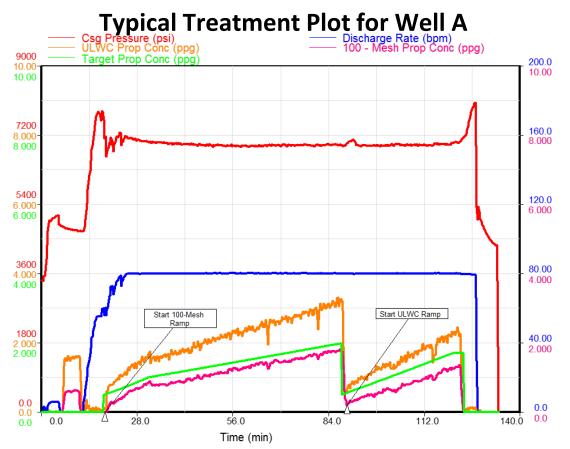


Fig. 9 – Typical treatment plot for Well A, showing a lead-in with 100-Mesh sand and a tail-in with ULWC

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity –

SPE Liquids-Rich Basins Conference

Well A – Well Performance

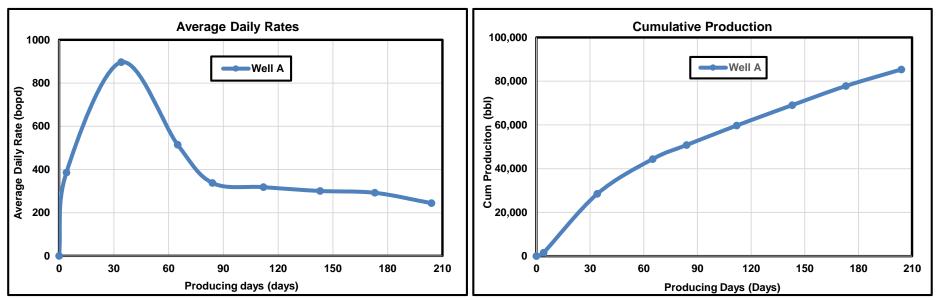


Fig. 10a - Average daily rate plot

Fig. 10b - Cumulative production plot

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity -

SPE Liquids-Rich Basins Conference

Summary and Conclusions

- SWF has become very popular
- Proppant transport is problematic in SWF
- A new low density (2.0 ASG), high transport proppant has been developed
- 25% lighter than sand with higher conductivity
- Slot flow testing confirms improved transport, leading to increased fracture geometry
- First deployment in Permian well was successful
- Several novel applications available

Paper # 187498• Low Density Proppant in Slickwater Applications Improves Reservoir Contact and Fracture Complexity -

SPE Liquids-Rich Basins Conference

SPE Liquids-Rich Basins Conference—North America

13–14 September 2017 The Petroleum Club MIDLAND, TEXAS, USA

Acknowledgements / Thank You / Questions

The authors want to thank: CARBO Ceramics Endurance Resources LLC FracTech Laboratories, UK Southwestern Energy

Slide 19