

Modeling Multi-Fractured Horizontal Well Completions; a Case for Planar Hydraulic Fractures

Robert Shelley PE, StrataGen Brian Davidson, StrataGen Koras Shah, StrataGen

Well Pad Layout

- Three Direct Offsets
 - Similar Prod Start Dates
 - 220 Days Production
- Similar Lateral Lengths
- Different Frac Designs
 - Proppant Volume & Selection
 - Frac Volume
 - Frac Stages Completed

Well	Prop Description	Prop. Wt. (Million Lb.)	Fluid Vol. (Million gal.)	Lateral Length (ft.)	Frac Stages Completed	Perf Clusters per Stage
Α	Resin Coated Sand (RCS) - Sand	10.3	9.3	5,800	24	5
В	Low Density Ceramic (LDC) - Sand	11.5	10.3	6,100	24	5
С	Low Density Ceramic (LDC)	7.1	8.8	6,200	21	5

Well Performance Modeling Approach

Calibrated Reservoir Model

Compare Fracture
Characteristics

Calibrated Frac Model

Frac Model Geometry - Wellbore Profile View

Reservoir Model - Production History Match (Well B)

Surface Flowing Pressure & Stress on Proppant (Well B)

Dynamic Proppant Conductivity

Fracture Profiles

Fracture Characteristics	RCS- Sand	LDC- Sand	LDC
Proppant (lb)	85,800	100,900	75,500
Fluid Volume (gal)	77,500	90,400	93,600
Avg Created Half-Length (ft)	650	730	680
Avg. Propped Half-Length (ft)	540	630	530
Avg Propped height (ft)	200	230	190
Effective Half-Length (ft)	150 - 75	170 - 100	165 - 100
Effective Height (ft)	85 - 60	110 - 75	65 - 60
Effective Cond. (md-ft)	10 - 2	11-3	10 - 5
Contributing Area (Msqft/frac)	25.5 – 9.0	37.4 - 15.0	21.5 – 12.0
Fracture Efficiency %	12.0 - 4.2	12.9 - 5.3	10.5 - 6.1

Relationship Between Fracture Efficiency and Conductivity

Fracture Efficiency (FE) = Effective Area (A_{eff}) /Propped Area (A_{prop})

Frac Design Production Forecasts

Frac Design Economic Forecasts

Conclusions

- There is significant hydraulic fracture inefficiency due to stranding of large portions of the propped fracture area which consequently do not contribute to well performance.
 - Increasing fracture conductivity appears to mitigate this issue resulting in improved fracture effectiveness, greater effective frac length and area.
- Proppant placement difficulties which reduce cluster efficiency, proppant and treatment volumes placed; decrease fracture effectiveness and well production.
 - These issues can be caused by formation and/or completion/frac design issues.
- This data indicates that a hydraulic fracture's effectiveness degrades over time. It
 was necessary to incorporate fracture degradation to match the production
 performance of these wells.
 - Pressure drawdown due to production which increases the stress on proppants appears to reduce fracture conductivity and effective fracture area.

Thank You!