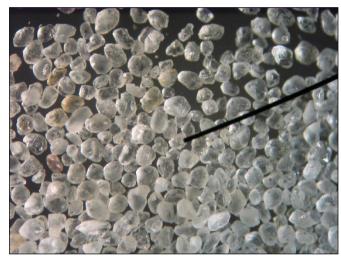
The Pros and Cons of Using 100-mesh Sand in the Eagle Ford


Wadhah Al-Tailji Technical Manager – Eagle Ford

Physical Properties of 100-mesh Sand

- Crystalline silica (quartz) sand
 - ~2.65 specific gravity
 - Preferably mono-crystalline ("Northern white", Ottawa, etc.)
- 70/140 API mesh range
 - ~0.19 mm median particle diameter

Examples of API-
recognized proppant
sieve sizes6/1220/408/1630/5012/1840/7016/2070/140

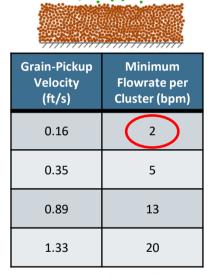
Source: PropTester, Inc. report of Mississippi 100-mesh test

Traditional Uses of 100-mesh Sand in Hydraulic Fracturing

- Fluid loss control (fissures)
 - To improve fluid efficiency, for fracture geometry development
- Plug off excess multiple competing fractures
 - Particularly in near-wellbore region
- Diversion
 - For main fracture propagation in an isotropic or highly naturally-fractured environment
- Scouring and erosion
 - Open tight restrictions in near-wellbore region

Bridging, Plugging, and Diversion node Figure 10: Nodes of 100 mesh sand on coal cleats Bridging within fracture Bridging at restriction entrance SPE 67298 (near-field) XL. Median Bridging Proppant Diameter Width (mm)(in) 100-mesh 0.19 0.022 40/70-mesh 0.28 0.033 30/50-mesh 0.053 0.45 Far-field diversion 20/40-mesh 0.55 0.065 StrataGen 🍧 5

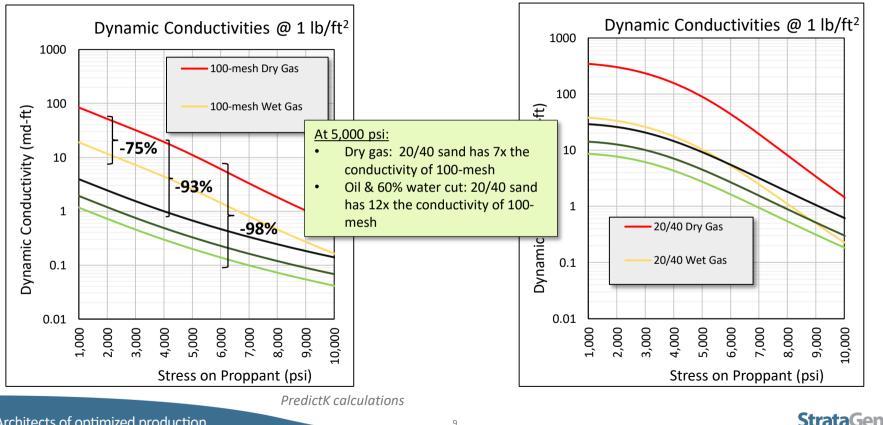
When Can 100-mesh Sand be Considered a Proppant?


- If conductivity is sufficient based on reservoir permeability
 - Assume $k_f w = 10 \text{ md-ft}, x_f = 300 \text{ ft}.$
 - If $F_{CD} \sim 10$ desired, then k must be = 0.003 md or less
- If the 100-mesh, as delivered, is within specs to qualify as a proppant
 - Sieve distribution, roundness and sphericity, turbidity, acid solubility, crush, etc.
- When 100-mesh has better transport characteristics than larger proppant
 - Biggest difference in thin fluids (e.g., slickwater)
- When 100-mesh can be placed in fractures that larger proppants cannot enter

 $F_{CD} = \frac{k_f w}{k x_f}$

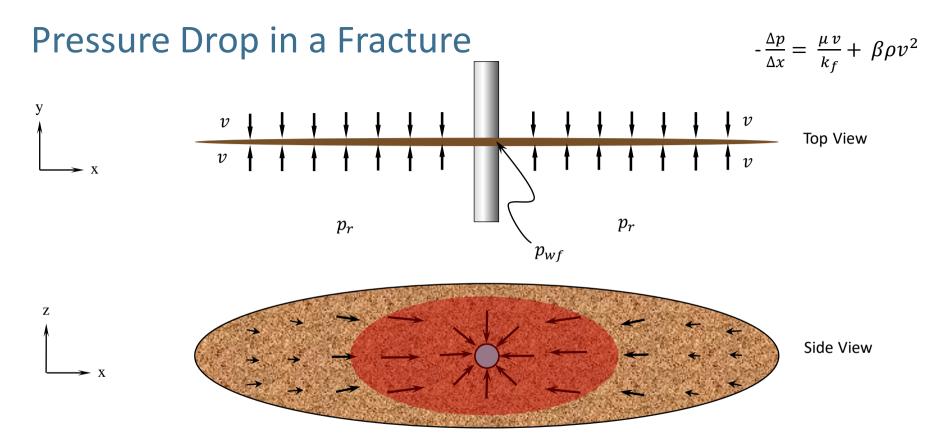
Proppant Transport in Thin Frac Fluids (in slickwater)

Proppant	Median Diameter (mm)	Narrowest Fracture (in)	Settling Velocity (ft/s)
100-mesh	0.19	0.022	0.05
40/70-mesh	0.28	0.033	0.12
30/50-mesh	0.45	0.053	0.30
20/40-mesh	0.55	0.065	0.44



Suspension Velocity (ft/s)	Suspension Flowrate per Cluster (bpm)		
0.53	7		
1.15	15		
2.98	40		
4.45	60		

- Narrowest Fracture Width: 3 grain diameters (bridging).
- Settling Velocity Stokes' Law
- Grain-Pickup Velocity: Minimum horizontal flow velocity for grains to be picked up from a proppant bed, around 3 times settling velocity (Biot & Medlin, SPE 14468).
- Minimum Flowrates: Assumes frac width = 0.25 in, frac height = 100 ft
- Suspension Velocity: Minimum velocity for proppant to be completely entrained in carrier fluid, around 10 times settling velocity (SPE 14468).

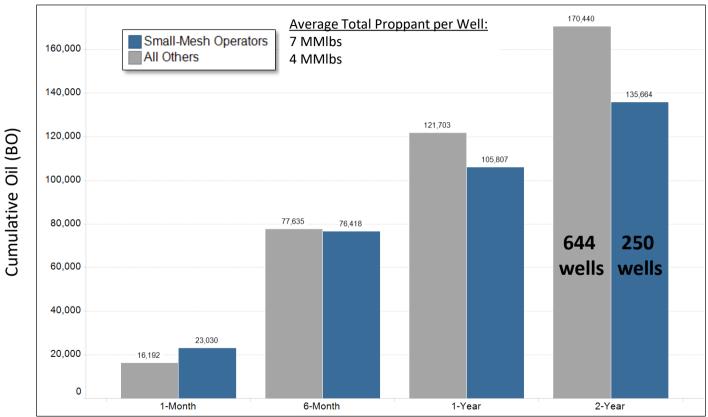


What is the Conductivity of 100-mesh?

Architects of optimized production

A CARBO business

Matrix-dominated production

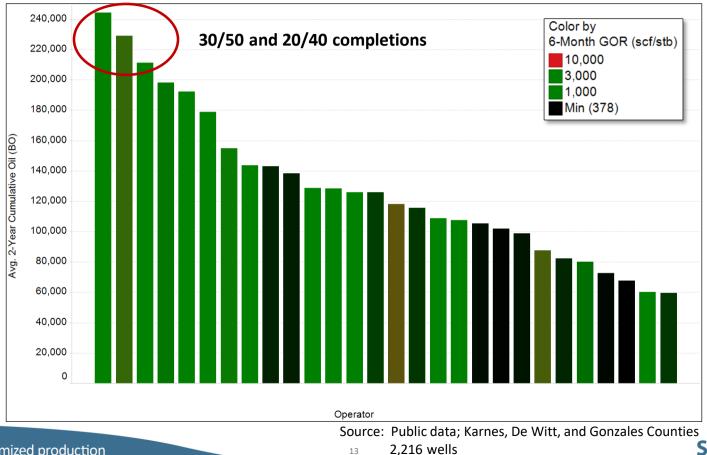


Pressure Drop in a Fracture (w/ Natural Fractures) $-\frac{\Delta p}{\Delta x} =$ $\frac{\mu v}{k_f} + \beta \rho v^2$ Ζ Side View Equally-distributed natural fractures Z Side View Unequally-distributed natural fractures

Eagle Ford Public Production Data Evaluation

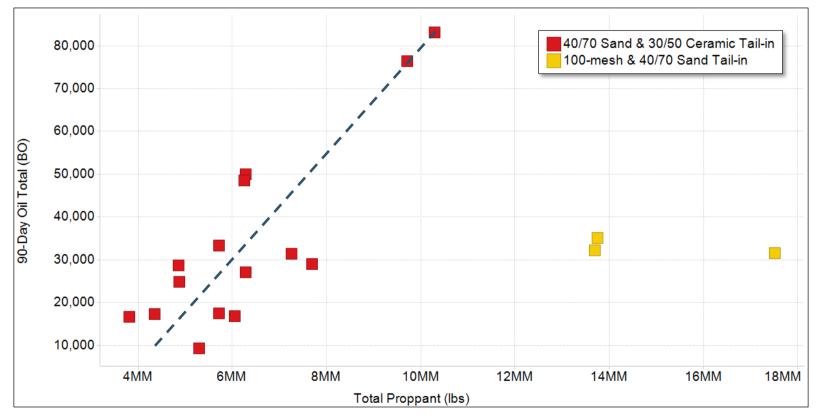
12

Source: Public data; Karnes, De Witt, and Gonzales Counties


Completions 2012 and newer, with at least 2 years of production

StrataGen

A CARBO business


Completion Practices – Operator Comparison

McMullen County Eagle Ford 100-mesh Study

SPE 173336

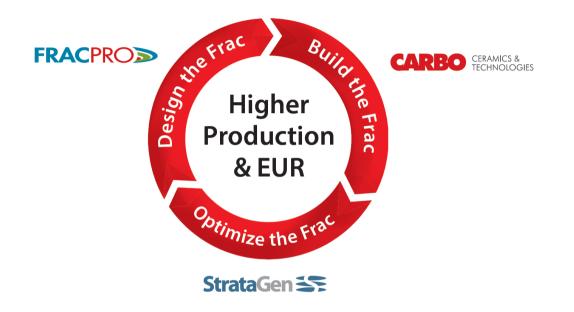
StrataGen

Shallow Eagle Ford Proppant Mesh Case Study

This well produced ~<u>80,000 BO</u> in first 6 months.

Nearest offset wells using primarily 100mesh produced an average of <u>13,000</u> <u>BO</u> in 6-months (4 wells).

Best 100-mesh well produced <u>23,000 BO</u> in 6-months, 1.5 miles away.


20/40-mesh Treatment Design

Conclusions

- 100-mesh can be applied as a fracture placement aid
- 100-mesh <u>might</u> be considered a "proppant," if formation permeability is truly as low as core data suggests
- Studies in a liquids-rich basin do not support use of 100-mesh as a primary "proppant" in hydraulic fractures
- Higher-conductivity proppant is better in higher flow portions of fractures

Thank you!

Questions?

